Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 447(2): 182-199, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30590018

RESUMO

The four Caenorhabditis species C. elegans, C. briggsae, C. remanei and C. brenneri show more divergence at the genomic level than humans compared to mice (Stein et al., 2003; Cutter et al., 2006, 2008). However, the behavior and anatomy of these nematodes are very similar. We present a detailed analysis of the embryonic development of these species using 4D-microscopic analyses of embryos including lineage analysis, terminal differentiation patterns and bioinformatical quantifications of cell behavior. Further functional experiments support the notion that the early development of all four species depends on identical induction patterns. Based on our results, the embryonic development of all four Caenorhabditis species are nearly identical, suggesting that an apparently optimal program to construct the body plan of nematodes has been conserved for at least 20 million years. This contrasts the levels of divergence between the genomes and the protein orthologs of the Caenorhabditis species, which is comparable to the level of divergence between mouse and human. This indicates an intricate relationship between the structure of genomes and the morphology of animals.


Assuntos
Caenorhabditis , Desenvolvimento Embrionário/fisiologia , Evolução Molecular , Genoma Helmíntico , Filogenia , Animais , Caenorhabditis/embriologia , Caenorhabditis/genética , Humanos , Camundongos , Especificidade da Espécie
2.
PLoS Biol ; 16(1): e2005099, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357348

RESUMO

Asymmetric cell division is essential to generate cellular diversity. In many animal cells, the cleavage plane lies perpendicular to the mitotic spindle, and it is the spindle positioning that dictates the size of the daughter cells. Although some properties of spindle positioning are conserved between distantly related model species and different cell types, little is known of the evolutionary robustness of the mechanisms underlying this event. We recorded the first embryonic division of 42 species of nematodes closely related to Caenorhabditis elegans, which is an excellent model system to study the biophysical properties of asymmetric spindle positioning. Our recordings, corresponding to 128 strains from 27 Caenorhabditis and 15 non-Caenorhabditis species (accessible at http://www.ens-lyon.fr/LBMC/NematodeCell/videos/), constitute a powerful collection of subcellular phenotypes to study the evolution of various cellular processes across species. In the present work, we analyzed our collection to the study of asymmetric spindle positioning. Although all the strains underwent an asymmetric first cell division, they exhibited large intra- and inter-species variations in the degree of cell asymmetry and in several parameters controlling spindle movement, including spindle oscillation, elongation, and displacement. Notably, these parameters changed frequently during evolution with no apparent directionality in the species phylogeny, with the exception of spindle transverse oscillations, which were an evolutionary innovation at the base of the Caenorhabditis genus. These changes were also unrelated to evolutionary variations in embryo size. Importantly, spindle elongation, displacement, and oscillation each evolved independently. This finding contrasts starkly with expectations based on C. elegans studies and reveals previously unrecognized evolutionary changes in spindle mechanics. Collectively, these data demonstrate that, while the essential process of asymmetric cell division has been conserved over the course of nematode evolution, the underlying spindle movement parameters can combine in various ways. Like other developmental processes, asymmetric cell division is subject to system drift.


Assuntos
Divisão Celular Assimétrica/fisiologia , Nematoides/embriologia , Fuso Acromático/fisiologia , Animais , Evolução Biológica , Caenorhabditis/embriologia , Caenorhabditis/genética , Caenorhabditis elegans/embriologia , Divisão Celular/fisiologia , Segregação de Cromossomos/fisiologia , Citocinese/genética , Citocinese/fisiologia , Embrião de Mamíferos/embriologia , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/genética , Evolução Molecular , Modelos Biológicos , Fenótipo , Filogenia , Fuso Acromático/genética
3.
G3 (Bethesda) ; 7(3): 823-834, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28064190

RESUMO

How species arise is a fundamental question in biology. Species can be defined as populations of interbreeding individuals that are reproductively isolated from other such populations. Therefore, understanding how reproductive barriers evolve between populations is essential for understanding the process of speciation. Hybrid incompatibility (for example, hybrid sterility or lethality) is a common and strong reproductive barrier in nature. Here we report a lethal incompatibility between two wild isolates of the nematode Caenorhabditis nouraguensis Hybrid inviability results from the incompatibility between a maternally inherited cytoplasmic factor from each strain and a recessive nuclear locus from the other. We have excluded the possibility that maternally inherited endosymbiotic bacteria cause the incompatibility by treating both strains with tetracycline and show that hybrid death is unaffected. Furthermore, cytoplasmic-nuclear incompatibility commonly occurs between other wild isolates, indicating that this is a significant reproductive barrier within C. nouraguensis We hypothesize that the maternally inherited cytoplasmic factor is the mitochondrial genome and that mitochondrial dysfunction underlies hybrid death. This system has the potential to shed light on the dynamics of divergent mitochondrial-nuclear coevolution and its role in promoting speciation.


Assuntos
Caenorhabditis/genética , Caenorhabditis/isolamento & purificação , Núcleo Celular/genética , Alelos , Animais , Bactérias/genética , Caenorhabditis/embriologia , Caenorhabditis/microbiologia , Cromossomos/genética , Perda do Embrião/genética , Feminino , Loci Gênicos , Hibridização Genética , Masculino , Modelos Genéticos , Simbiose
4.
Evol Dev ; 17(6): 380-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26492828

RESUMO

Thermal developmental plasticity represents a key organismal adaptation to maintain reproductive capacity in contrasting and fluctuating temperature niches. Although extensively studied, research on thermal plasticity has mainly focused on phenotypic outcomes, such as adult life history, rather than directly measuring plasticity of underlying developmental processes. How thermal plasticity of developmental phenotypes maps into plasticity of resulting final phenotypes, and how such mapping relationships evolve, thus remain poorly understood. Here we address these questions by quantifying thermal plasticity of Caenorhabditis hermaphrodite germline development. We integrate measurements of germline development and fertility at the upper thermal range in isolates of C. briggsae, C. elegans, and C. tropicalis. First, we compare intra- and interspecific variation in thermal germline plasticity with plasticity in reproductive output. Second, we ask whether the developmental errors leading to fertility break-down at upper thermal limits are evolutionarily conserved. We find that temperature variation modulates spermatogenesis, oogenesis and germ cell progenitor pools, yet the thermal sensitivity of these processes varies among isolates and species, consistent with evolutionary variation in upper thermal limits of hermaphrodite fertility. Although defective sperm function is a major contributor to heat-induced fertility break-down, high temperature also significantly perturbs oogenesis, germline integrity, and mitosis-meiosis progression. Remarkably, the occurrence and frequency of specific errors are strongly species- and genotype-dependent, indicative of evolutionary divergence in thermal sensitivity of distinct processes in germline development. Therefore, the Caenorhabditis reproductive system displays complex genotype-by-temperature interactions at the developmental level, which may remain masked when studying thermal plasticity exclusively at the life history level.


Assuntos
Caenorhabditis/fisiologia , Fertilidade , Oogênese , Espermatogênese , Animais , Caenorhabditis/embriologia , Caenorhabditis/crescimento & desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Organismos Hermafroditas/crescimento & desenvolvimento , Organismos Hermafroditas/fisiologia , Temperatura
5.
Int J Dev Biol ; 59(1-3): 11-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26374521

RESUMO

Cell death is prominent in gametogenesis and shapes and sculpts embryos. In non-mammalian embryos one sees little or no cell death prior to the maternal-zygotic transition, but, in mammalian embryos, characteristic deaths of one or two cells occur at the end of compaction and are apparently necessary for the separation of the trophoblast from the inner cell mass. Considerable sculpting of the embryo occurs by cell deaths during organogenesis, and appropriate cell numbers, especially in the CNS and in the immune system, are generated by massive overproduction of cells and selection of a few, with death of the rest. The timing, identity, and genetic control of specific cells that die have been well documented in Caenorhabditis, but in other embryos the stochastic nature of the deaths limit our ability to do more than identify the regions in which cells will die. Complete disruption of the cell death machinery can be lethal, but many mutations of the regulatory machinery yield only modest or no phenotypes, indicating substantial redundancy and compensation of regulatory mechanisms. Most of the deaths are apoptotic and are identified by techniques used to recognize apoptosis, but techniques identifying lysosomes (whether in dying or involuting cells or in the phagocytes that invade the tissue) also reveal patterns of cell death. Aberrant cell deaths that produce known phenotypes are typically localized, indicating that the mechanism of activating a programmed death in a specific region, rather than the mechanism of death, is aberrant. These results lead us to conclude that we need to know much more about the conversations among cells that lead cells to commit suicide.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Gametogênese/fisiologia , Células Germinativas/crescimento & desenvolvimento , Organogênese/fisiologia , Animais , Caenorhabditis/embriologia , Embrião de Mamíferos/embriologia , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Lisossomos/metabolismo , Camundongos
6.
Evolution ; 69(8): 2005-17, 2015 08.
Artigo em Inglês | MEDLINE | ID: mdl-26102479

RESUMO

Deciphering the genetic and developmental causes of the disproportionate rarity, inviability, and sterility of hybrid males, Haldane's rule, is important for understanding the evolution of reproductive isolation between species. Moreover, extrinsic and prezygotic factors can contribute to the magnitude of intrinsic isolation experienced between species with partial reproductive compatibility. Here, we use the nematodes Caenorhabditis briggsae and C. nigoni to quantify the sensitivity of hybrid male viability to extrinsic temperature and developmental timing, and test for a role of mito-nuclear incompatibility as a genetic cause. We demonstrate that hybrid male inviability manifests almost entirely as embryonic, not larval, arrest and is maximal at the lowest rearing temperatures, indicating an intrinsic-by-extrinsic interaction to hybrid inviability. Crosses using mitochondrial substitution strains that have reciprocally introgressed mitochondrial and nuclear genomes show that mito-nuclear incompatibility is not a dominant contributor to postzygotic isolation and does not drive Haldane's rule in this system. Crosses also reveal that competitive superiority of X-bearing sperm provides a novel means by which postmating prezygotic factors exacerbate the rarity of hybrid males. These findings highlight the important roles of gametic, developmental, and extrinsic factors in modulating the manifestation of Haldane's rule.


Assuntos
Caenorhabditis/embriologia , Caenorhabditis/genética , Hibridização Genética , Isolamento Reprodutivo , Animais , Caenorhabditis/crescimento & desenvolvimento , Núcleo Celular/genética , Embrião não Mamífero , Infertilidade/genética , Masculino , Mitocôndrias/genética , Cromossomos Sexuais , Espermatozoides/fisiologia , Temperatura
7.
Curr Biol ; 25(6): 732-740, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25683802

RESUMO

BACKGROUND: Cellular structures such as the nucleus, Golgi, centrioles, and spindle show remarkable diversity between species, but the mechanisms that produce these variations in cell biology are not known. RESULTS: Here we investigate the mechanisms that contribute to variations in morphology and dynamics of the mitotic spindle, which orchestrates chromosome segregation in all Eukaryotes and positions the division plane in many organisms. We use high-throughput imaging of the first division in nematodes to demonstrate that the measured effects of spontaneous mutations, combined with stabilizing selection on cell size, are sufficient to quantitatively explain both the levels of within-species variation in the spindle and its diversity over ∼100 million years of evolution. Furthermore, our finding of extensive within-species variation for the spindle demonstrates that there is not just one "wild-type" form, rather that cellular structures can exhibit a surprisingly broad diversity of naturally occurring behaviors. CONCLUSIONS: Our results argue that natural selection acts predominantly on cell size and indirectly influences the spindle through the scaling of the spindle with cell size. Previous studies have shown that the spindle also scales with cell size during early development. Thus, the scaling of the spindle with cell size controls its variation over both ontogeny and phylogeny.


Assuntos
Evolução Biológica , Fuso Acromático/fisiologia , Animais , Caenorhabditis/embriologia , Caenorhabditis/genética , Caenorhabditis/fisiologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Tamanho Celular , Segregação de Cromossomos/genética , Segregação de Cromossomos/fisiologia , Modelos Biológicos , Mutação , Seleção Genética , Especificidade da Espécie , Fuso Acromático/genética , Fuso Acromático/ultraestrutura
8.
Evol Dev ; 17(1): 34-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25627712

RESUMO

Studies of vulval development in the nematode C. elegans have identified many genes that are involved in cell division and differentiation processes. Some of these encode components of conserved signal transduction pathways mediated by EGF, Notch, and Wnt. To understand how developmental mechanisms change during evolution, we are doing a comparative analysis of vulva formation in C. briggsae, a species that is closely related to C. elegans. Here, we report 14 mutations in 7 Multivulva (Muv) genes in C. briggsae that inhibit inappropriate division of vulval precursors. We have developed a new efficient and cost-effective gene mapping method to localize Muv mutations to small genetic intervals on chromosomes, thus facilitating cloning and functional studies. We demonstrate the utility of our method by determining molecular identities of three of the Muv genes that include orthologs of Cel-lin-1 (ETS) and Cel-lin-31 (Winged-Helix) of the EGF-Ras pathway and Cel-pry-1 (Axin), of the Wnt pathway. The remaining four genes reside in regions that lack orthologs of known C. elegans Muv genes. Inhibitor studies demonstrate that the Muv phenotype of all four new genes is dependent on the activity of the EGF pathway kinase, MEK. One of these, Cbr-lin(gu167), shows modest increase in the expression of Cbr-lin-3/EGF compared to wild type. These results argue that while Cbr-lin(gu167) may act upstream of Cbr-lin-3/EGF, the other three genes influence the EGF pathway downstream or in parallel to Cbr-lin-3. Overall, our findings demonstrate that the genetic program underlying a conserved developmental process includes both conserved and divergent functional contributions.


Assuntos
Caenorhabditis/embriologia , Caenorhabditis/genética , Fator de Crescimento Epidérmico/metabolismo , Transdução de Sinais , Animais , Caenorhabditis/classificação , Caenorhabditis/metabolismo , Feminino , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Vulva/citologia , Vulva/embriologia , Vulva/metabolismo
9.
J Cell Biol ; 201(5): 653-62, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-23690175

RESUMO

During the first embryonic division in Caenorhabditis elegans, the mitotic spindle is pulled toward the posterior pole of the cell and undergoes vigorous transverse oscillations. We identified variations in spindle trajectories by analyzing the outwardly similar one-cell stage embryo of its close relative Caenorhabditis briggsae. Compared with C. elegans, C. briggsae embryos exhibit an anterior shifting of nuclei in prophase and reduced anaphase spindle oscillations. By combining physical perturbations and mutant analysis in both species, we show that differences can be explained by interspecies changes in the regulation of the cortical Gα-GPR-LIN-5 complex. However, we found that in both species (1) a conserved positional switch controls the onset of spindle oscillations, (2) GPR posterior localization may set this positional switch, and (3) the maximum amplitude of spindle oscillations is determined by the time spent in the oscillating phase. By investigating microevolution of a subcellular process, we identify new mechanisms that are instrumental to decipher spindle positioning.


Assuntos
Caenorhabditis elegans/embriologia , Polaridade Celular , Embrião não Mamífero/citologia , Fuso Acromático/fisiologia , Animais , Evolução Biológica , Caenorhabditis/embriologia , Caenorhabditis/metabolismo , Caenorhabditis/ultraestrutura , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia
10.
Dev Cell ; 22(5): 1101-8, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22560298

RESUMO

A fundamental question in developmental biology relates to the connection between morphological stages and their underlying molecular activity. Here we demonstrate that, at the molecular level, embryonic development in five Caenorhabditis species proceeds through two distinct milestones in which the transcriptome is resistant to differences in species-specific developmental timings. By comparing the complete protein-coding transcriptomes of individually timed embryos across ten morphological markers, we found that developmental milestones can be characterized by their expression dynamics and activation of key developmental regulators. This approach led us to discover the nematode phylotypic stage and to show that in chordates and arthropods it is represented as two distinct stages, suggesting that animal body plans might evolve by uncoupling and elaboration on formerly synchronous processes.


Assuntos
Caenorhabditis/embriologia , Caenorhabditis/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Helminto/genética , Transcriptoma/fisiologia , Animais , Artrópodes , Cordados , Sequência Conservada , Filogenia , Interferência de RNA , Especificidade da Espécie , Fatores de Tempo
11.
Curr Biol ; 21(7): 527-38, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21458263

RESUMO

BACKGROUND: Biological networks experience quantitative change in response to environmental and evolutionary variation. Computational modeling allows exploration of network parameter space corresponding to such variations. The intercellular signaling network underlying Caenorhabditis vulval development specifies three fates in a row of six precursor cells, yielding a quasi-invariant 3°3°2°1°2°3° cell fate pattern. Two seemingly conflicting verbal models of vulval precursor cell fate specification have been proposed: sequential induction by the EGF-MAP kinase and Notch pathways, or morphogen-based induction by the former. RESULTS: To study the mechanistic and evolutionary system properties of this network, we combine experimental studies with computational modeling, using a model that keeps the network architecture constant but varies parameters. We first show that the Delta autocrine loop can play an essential role in 2° fate specification. With this autocrine loop, the same network topology can be quantitatively tuned to use in the six-cell-row morphogen-based or sequential patterning mechanisms, which may act singly, cooperatively, or redundantly. Moreover, different quantitative tunings of this same network can explain vulval patterning observed experimentally in C. elegans, C. briggsae, C. remanei, and C. brenneri. We experimentally validate model predictions, such as interspecific differences in isolated vulval precursor cell behavior and in spatial regulation of Notch activity. CONCLUSIONS: Our study illustrates how quantitative variation in the same network comprises developmental patterning modes that were previously considered qualitatively distinct and also accounts for evolution among closely related species.


Assuntos
Comunicação Autócrina , Padronização Corporal , Caenorhabditis/embriologia , Caenorhabditis/metabolismo , Transdução de Sinais , Animais , Evolução Biológica , Caenorhabditis/genética , Caenorhabditis elegans/metabolismo , Simulação por Computador , Indução Embrionária , Fator de Crescimento Epidérmico/metabolismo , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Receptor Notch1/metabolismo , Vulva/citologia , Vulva/embriologia
12.
Dev Biol ; 346(1): 128-39, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20624381

RESUMO

The C. elegans hermaphrodite vulva serves as a paradigm for understanding how signaling pathways control organ formation. Previous studies have shown that Wnt signaling plays important roles in vulval development. To understand the function and evolution of Wnt signaling in Caenorhabditis nematodes we focused on C. briggsae, a species that is substantially divergent from C. elegans in terms of the evolutionary time scale yet shares almost identical morphology. We isolated mutants in C. briggsae that display multiple pseudo-vulvae resulting from ectopic VPC induction. We cloned one of these loci and found that it encodes an Axin homolog, Cbr-PRY-1. Our genetic studies revealed that Cbr-pry-1 functions upstream of the canonical Wnt pathway components Cbr-bar-1 (beta-catenin) and Cbr-pop-1(tcf/lef) as well as the Hox target Cbr-lin-39 (Dfd/Scr). We further characterized the pry-1 vulval phenotype in C. briggsae and C. elegans using 8 cell fate markers, cell ablation, and genetic interaction approaches. Our results show that ectopically induced VPCs in pry-1 mutants adopt 2° fates independently of the gonad-derived inductive and LIN-12/Notch-mediated lateral signaling pathways. We also found that Cbr-pry-1 mutants frequently show a failure of P7.p induction. A similar, albeit low penetrant, defect is also observed in C. elegans pry-1 mutants. The genetic analysis of the P7.p induction defect revealed that it was caused by altered regulation of lin-12 and its transcriptional target lip-1 (MAP kinase phosphatase). Thus, our results provide evidence for LIN-12/Notch-dependent and independent roles of Wnt signaling in promoting 2 degrees VPC fates in both nematode species.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/embriologia , Caenorhabditis/embriologia , Transdução de Sinais/fisiologia , Vulva/embriologia , Proteínas Wnt/fisiologia , Animais , Padronização Corporal , Proteínas de Ciclo Celular/fisiologia , Feminino , Proteínas de Membrana/fisiologia , Mutação , Proteínas Tirosina Fosfatases/fisiologia , Receptores Notch/fisiologia
13.
Genome Res ; 19(12): 2214-20, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19745112

RESUMO

Genomic analyses have shown that adjacent genes are often coexpressed. However, it remains unclear whether the observed coexpression is a result of functional organization or a consequence of adjacent active chromatin or transcriptional read-through, which may be free of selective biases. Here, we compare temporal expression profiles of one-to-one orthologs in conserved or divergent genomic positions in two genetically distant nematode species-Caenorhabditis elegans and C. briggsae-that share a near-identical developmental program. We find, for all major patterns of temporal expression, a substantive amount of gene expression divergence. However, this divergence is not random: Genes that function in essential developmental processes show less divergence than genes whose functions are not required for viability. Coexpression of gene neighbors in either species is highly divergent in the other, in particular when the neighborhood is not conserved. Interestingly, essential genes appear to maintain their expression profiles despite changes in neighborhoods suggesting exposure to stronger selection. Our results suggest that a significant fraction of the coexpression observed among gene neighbors may be accounted for by neutral processes, and further that these may be distinguished by comparative gene expression analyses.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Caenorhabditis , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Helminto/metabolismo , Animais , Caenorhabditis/embriologia , Caenorhabditis/genética , Caenorhabditis/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Biologia Computacional , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes , Genes de Helmintos , Proteínas de Helminto/genética , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade da Espécie
14.
Dev Biol ; 325(1): 296-306, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18977344

RESUMO

In the nematode, C. elegans, the bZIP/homeodomain transcription factor SKN-1 and the Wnt effector TCF/POP-1 are central to the maternal specification of the endomesoderm prior to gastrulation. The 8-cell stage blastomere MS is primarily a mesodermal precursor, giving rise to cells of the pharynx and body muscle among others, while its sister E clonally generates the entire endoderm (gut). In C. elegans, loss of SKN-1 results in the absence of MS-derived tissues all of the time, and loss of gut most of the time, while loss of POP-1 results in a mis-specification of MS as an E-like cell, resulting in ectopic gut. We show that in C. briggsae, RNAi of skn-1 results in a stronger E defect but no apparent MS defect, while RNAi of pop-1 results in loss of gut and an apparent E to MS transformation, the opposite of the pop-1 knockdown phenotype seen in C. elegans. The difference in pop-1(-) phenotypes correlates with changes in how the endogenous endoderm-specifying end genes are regulated by POP-1 in the two species. Our results suggest that integration of Wnt-dependent and Wnt-independent cell fate specification pathways within the Caenorhabditis genus can occur in different ways.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis/embriologia , Proteínas de Ligação a DNA/metabolismo , Endoderma/embriologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Mesoderma/embriologia , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Padronização Corporal , Caenorhabditis/genética , Caenorhabditis elegans/metabolismo , Embrião não Mamífero/anormalidades , Embrião não Mamífero/metabolismo , Endoderma/anormalidades , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Faringe/anormalidades , Fenótipo , Interferência de RNA , Homologia de Sequência de Aminoácidos , Proteínas Wnt/metabolismo
15.
Dev Biol ; 325(2): 402-11, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18950616

RESUMO

The Caenorhabditis elegans LIM homeobox gene lin-11 plays crucial roles in the morphogenesis of the reproductive system and differentiation of several neurons. The expression of lin-11 in different tissues is regulated by enhancer regions located upstream as well as within lin-11 introns. These regions are functionally separable suggesting that multiple regulatory inputs operate to control the spatiotemporal pattern of lin-11 expression. To further dissect apart the nature of lin-11 regulation we focused on three Caenorhabditis species C. briggsae, C. remanei, and C. brenneri that are substantially diverged from C. elegans but share almost identical vulval morphology. We show that, in these species, the 5' region of lin-11 possesses conserved sequences to activate lin-11 expression in the reproductive system. Analysis of the in vivo role of these sequences in C. elegans has led to the identification of three functionally distinct enhancers for the vulva, VC neurons, and uterine pi lineage cells. We found that the pi enhancer is regulated by FOS homolog FOS-1 and LIN-12/Notch pathway effectors, LAG-1 (Su(H)/CBF1 family) and EGL-43 (EVI1 family). These results indicate that multiple factors cooperate to regulate pi-specific expression of lin-11 and together with other findings suggest that the mechanism of lin-11 regulation by LIN-12/Notch signaling is evolutionarily conserved in Caenorhabditis species. Our work demonstrates that 4-way comparison is a powerful tool to study conserved mechanisms of gene regulation in C. elegans and other nematodes.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis/metabolismo , Elementos Facilitadores Genéticos , Proteínas de Homeodomínio/genética , Neurônios/fisiologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Caenorhabditis/embriologia , Caenorhabditis/genética , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Linhagem da Célula , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Dados de Sequência Molecular , Receptores Notch/metabolismo , Especificidade da Espécie , Vulva/embriologia , Vulva/crescimento & desenvolvimento , Vulva/metabolismo
16.
Dev Biol ; 314(1): 93-9, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18164284

RESUMO

Comparative genomic analysis of important signaling pathways in Caenorhabditis briggsae and Caenorhabditis elegans reveals both conserved features and also differences. To build a framework to address the significance of these features we determined the C. briggsae embryonic cell lineage, using the tools StarryNite and AceTree. We traced both cell divisions and cell positions for all cells through all but the last round of cell division and for selected cells through the final round. We found the lineage to be remarkably similar to that of C. elegans. Not only did the founder cells give rise to similar numbers of progeny, the relative cell division timing and positions were largely maintained. These lineage similarities appear to give rise to similar cell fates as judged both by the positions of lineally equivalent cells and by the patterns of cell deaths in both species. However, some reproducible differences were seen, e.g., the P4 cell cycle length is more than 40% longer in C. briggsae than that in C. elegans (p<0.01). The extensive conservation of embryonic development between such divergent species suggests that substantial evolutionary distance between these two species has not altered these early developmental cellular events, although the developmental defects of transpecies hybrids suggest that the details of the underlying molecular pathways have diverged sufficiently so as to not be interchangeable.


Assuntos
Caenorhabditis/embriologia , Linhagem da Célula/fisiologia , Animais , Evolução Biológica , Caenorhabditis/citologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Morte Celular/fisiologia , Movimento Celular/fisiologia , Embrião não Mamífero/citologia , Filogenia , Transdução de Sinais , Especificidade da Espécie
17.
Curr Biol ; 17(2): 103-14, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17240335

RESUMO

BACKGROUND: The Caenorhabditis vulva is formed from a row of Pn.p precursor cells, which adopt a spatial cell-fate pattern-3 degrees 3 degrees 2 degrees 1 degrees 2 degrees 3 degrees -centered on the gonadal anchor cell. This pattern is robustly specified by an intercellular signaling network including EGF/Ras induction from the anchor cell and Delta/Notch signaling between the precursor cells. It is unknown how the roles and quantitative contributions of these signaling pathways have evolved in closely related Caenorhabditis species. RESULTS: Cryptic evolution in the network is uncovered by quantification of cell-fate-pattern frequencies obtained after displacement of the system out of its normal range, either by anchor-cell ablations or through LIN-3/EGF overexpression. Silent evolution in the Caenorhabditis genus covers a large neutral space of cell-fate patterns. Direct induction of the 1 degrees fate as in C. elegans appeared within the genus. C. briggsae displays a graded induction of 1 degrees and 2 degrees fates, with 1 degrees fate induction requiring a longer time than in C. elegans, and a reduced lateral inhibition of adjacent 1 degrees fates. C. remanei displays a strong lateral induction of 2 degrees fates relative to vulval-fate activation in the central cell. This evolution in cell-fate pattern space can be experimentally reconstituted by mild variations of Ras, Wnt, and Notch pathway activities in C. elegans and C. briggsae. CONCLUSIONS: Quantitative evolution in the roles of graded induction by LIN-3/EGF and Notch signaling is demonstrated for the Caenorhabditis vulva signaling network. This evolutionary system biology approach provides a quantitative view of the variational properties of this biological system.


Assuntos
Evolução Biológica , Padronização Corporal/fisiologia , Caenorhabditis/embriologia , Indução Embrionária/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas de Caenorhabditis elegans/fisiologia , Fator de Crescimento Epidérmico/fisiologia , Feminino , Expressão Gênica , Receptores Notch/fisiologia , Vulva/embriologia , Proteínas ras/fisiologia
18.
Evol Dev ; 8(4): 362-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16805900

RESUMO

The morphogenesis of a gut from the endoderm has been well studied among the animal kingdom and is also well described in the nematode Caenorhabditis elegans. But are there other ways to build a nematode intestine? Sulston et al. (1983) described a different intestinal cell lineage in the species Panagrellus redivivus and Turbatrix aceti that includes two programmed cell deaths. However, no details are known about the three-dimensional (3D) configuration and the role of the cell deaths. Here, we describe the intestinal morphogenesis of P. redivivus and five other nematode species by means of four-dimensional microscopy, which gives us a 3D representation of gut formation at the cellular level. The morphological pathway of gut formation is highly conserved among these distantly related species. However, we found the P. redivivus pattern in another related species Halicephalobus gingivalis. In this pattern, the intestinal precursors migrate inward in concert with the mesoderm precursors. Based on the observations, we propose a hypothesis that could explain the differences. The positions of the mesoderm precursors create a possible spatial constraint, by which the establishment of bilateral symmetry in the intestine is delayed. This symmetry is corrected by cell migrations; other cells are eliminated and compensated by supplementary cell divisions. This pattern leads to the same result as in the other nematodes: a bilateral symmetrical intestine with nine rings. This illustrates how conserved body plans can be achieved by different developmental mechanisms.


Assuntos
Trato Gastrointestinal/embriologia , Nematoides/embriologia , Animais , Evolução Biológica , Caenorhabditis/embriologia , Filogenia
19.
Genetics ; 173(4): 2021-31, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16783011

RESUMO

Caenorhabditis briggsae provides a natural comparison species for the model nematode C. elegans, given their similar morphology, life history, and hermaphroditic mode of reproduction. Despite C. briggsae boasting a published genome sequence and establishing Caenorhabditis as a model genus for genetics and development, little is known about genetic variation across the geographic range of this species. In this study, we greatly expand the collection of natural isolates and characterize patterns of nucleotide variation for six loci in 63 strains from three continents. The pattern of polymorphisms reveals differentiation between C. briggsae strains found in temperate localities in the northern hemisphere from those sampled near the Tropic of Cancer, with diversity within the tropical region comparable to what is found for C. elegans in Europe. As in C. elegans, linkage disequilibrium is pervasive, although recombination is evident among some variant sites, indicating that outcrossing has occurred at a low rate in the history of the sample. In contrast to C. elegans, temperate regions harbor extremely little variation, perhaps reflecting colonization and recent expansion of C. briggsae into northern latitudes. We discuss these findings in relation to their implications for selection, demographic history, and the persistence of self-fertilization.


Assuntos
Caenorhabditis/genética , Genoma Helmíntico , Desequilíbrio de Ligação , Modelos Genéticos , Polimorfismo Genético , Locos de Características Quantitativas/genética , Animais , Sequência de Bases , Caenorhabditis/embriologia , Dados de Sequência Molecular , Reprodução/genética , Especificidade da Espécie
20.
Biochem Biophys Res Commun ; 301(2): 317-23, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12565862

RESUMO

EXT gene family members including EXT1, EXT2, and EXTL2 are glycosyltransferases required for heparan sulfate biosynthesis. To examine the biological functions of rib-2, a member of the Caenorhabditis elegans EXT gene family, we generated a mutant worm lacking the rib-2 gene using the UV-TMP method followed by sib-selection. Inactivation of rib-2 alleles induced developmental abnormalities in F2 and F3 homozygous worms, while F1 heterozygotes showed a normal morphology. The F2 homozygous progeny generated from the F1 heterozygous hermaphrodites somehow developed to adult stage but exhibited abnormal characteristics such as developmental delay and egg-laying defects. The F3 homozygous progeny from the F2 homozygous hermaphrodites showed early developmental defects and most of the F3 worms stopped developing during the gastrulation stage. Whole-mount staining analysis for heparan sulfate using Toluidine blue (pH 2.5) revealed a defect of heparan sulfate biosynthesis in the F2 homozygotes. The analysis using fluorometric post-column high-performance liquid chromatography also uncovered reduced production of heparan sulfate in the rib-2 mutant. These results indicate that rib-2 is essential for embryonic development and heparan sulfate biosynthesis in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis/embriologia , Caenorhabditis/crescimento & desenvolvimento , Heparitina Sulfato/biossíntese , N-Acetilglucosaminiltransferases/metabolismo , Animais , Caenorhabditis/citologia , Caenorhabditis/genética , Condroitina/metabolismo , Dissacarídeos/metabolismo , Genes de Helmintos , Família Multigênica , Mutação , N-Acetilglucosaminiltransferases/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...